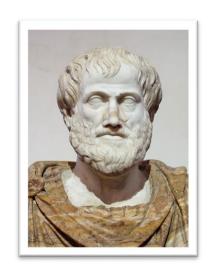
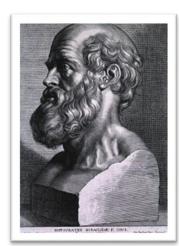

DIVERSITY AND DISEASE: POTENTIAL APPLICATIONS OF APOL1 IN KIDNEY DISEASE RISK PREDICTION AND KIDNEY TRANSPLANTATION



October 13, 2018

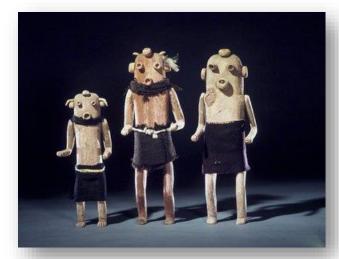

Dana C. Crawford, PhD
Associate Professor
Population and Quantitative Health Sciences
Institute for Computational Biology

GENETICS AND MEDICINE A HISTORY

Concepts of heredity

Aristotle

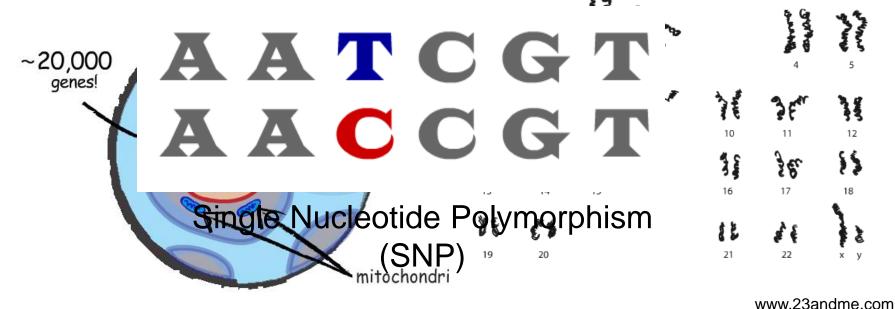
Hippocrates


https://en.wikipedia.org

INSTITUTE FOR
COMPUTATIONAL BIOLOGY

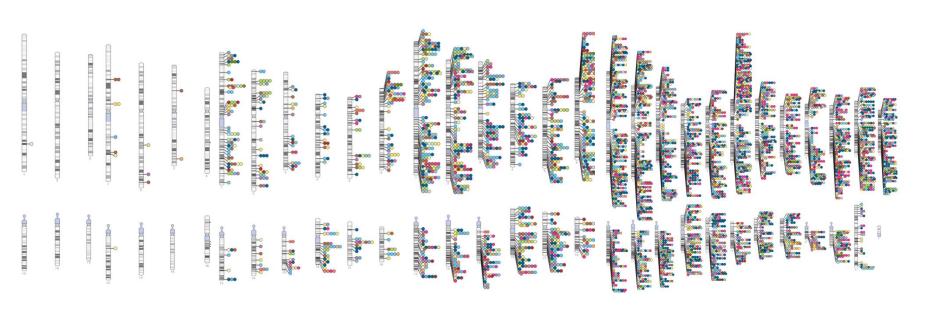
GENETICS AND MEDICINE A HISTORY

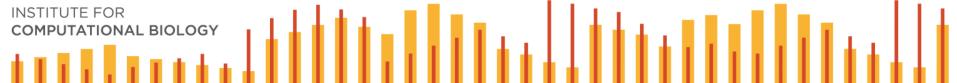
https://phys.org/news/2017-08-genome-sequencing-maize-highlands-thousands.html


She-we-na (Zuni Pueblo)

Kachina Doll (Pakwen [Clown])

www.brooklynmuseum.org


INSTITUTE FOR COMPUTATIONAL BIOLOGY


GENETICS, THE BASICS

INSTITUTE FOR COMPUTATIONAL BIOLOGY

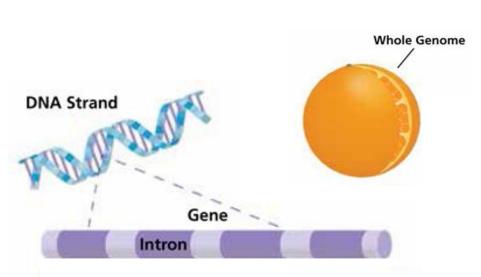
AGE OF GENOMIC DISCOVERY

https://www.ebi.ac.uk/gwas/ GWAS as of 9/15: 3,567 publications 71,673 associated SNPs (10⁻⁵) **INSTITUTE FOR** COMPUTATIONAL BIOLOGY

GENOTYPING AND SEQUENCING POPULATIONS AND PATIENTS

Illumina whole-genome arrays

Limited to known variants


Mostly common variants

European bias*

GENOTYPING AND SEQUENCING

POPULATIONS AND PATIENTS

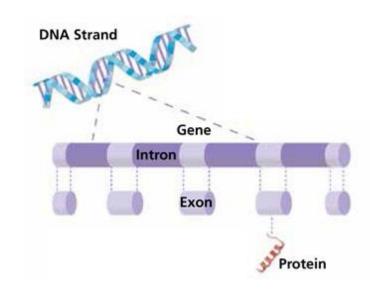


ILLUSTRATION BY MEAHGAN HARRIGAN

All exons = the exome 1% of whole genome

INSTITUTE FOR COMPUTATIONAL BIOLOGY

GENETICS AND PRECISION MEDICINE

Diagnosis

Risk prediction

Treatment

Right Drug

Right Dose

PRECISION MEDICINE A New Initiative

Lancet 385:2448-2449 (2015)

- Launched January 20, 2015
- 2016 budget of \$215M

PRECISION MEDICINE A New Initiative

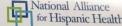
Aims to ascertain

- At least 1 million US residents
- Representative of the population

Willing to provide

- Biospecimens
- Health data (EHRs)
- Lifestyle/behavior data
- All of the above, longitudinally

(Photo credit: Dr. Janina Jeff at the 2017 New Balance Bronx 10
INSTITUTE FOR
COMPUTATIONAL BIOLOGY


PRECISION MEDICINE A NEW INITIATIVE

Emphasis on participant diversity

INSTITUTE FOR COMPUTATIONAL BIOLOGY

All of Us Research Program

future professional, to participate as a volunteer, but also to explore the possibilities and ways you can further your own research to help

- Taking part is free, and won't cost you anything
- All eligible adults in the United States can join. You can be involved in the program as much or as little
- If you join, you will be asked to complete surveys and safely share your medical records. You may be asked to have your physical measurements taken and to give blood and urine samples.
- The program will last for at least 10 years; we hope you stay in it that long. You can choose to stop taking part at any time. If you do, your access to health care or treatment will not be affected.
- The program is getting information from different people across the country. This will help researchers learn new things to make discoveries
- · We keep everything you tell us private and safe.

To Learn More About the All of Us Research Program or to Join:

Visit: www.JoinAllofUs.org/juntos

Text: JUNTOS to 205722

Call: (866) 783-2645

KIDNEY PRECISION MEDICINE PROJECT

National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

- Acute kidney injury (AKI)
- Chronic kidney disease (CKD)

www.kidney.org % OF KIDNEY

FUNCTION

Less than

GFR*

Less than 15

CKD DIAGNOSIS

- Requires a blood test
- Estimates filtration rate

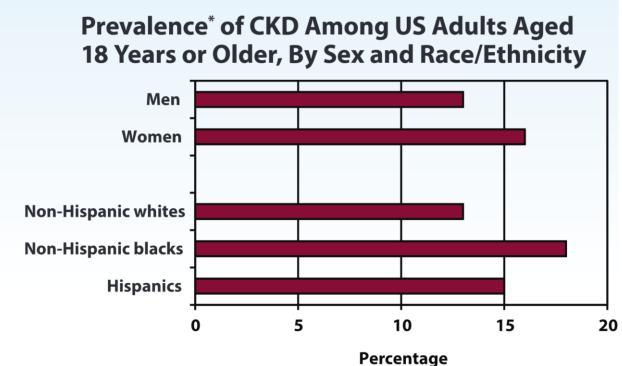
STAGES OF CHRONIC KIDNEY DISEASE

Stage 5

Kidney failure

CKD IS COMMON

https://www.cdc.gov/kidneydisease/pdf/kidney_factsheet.pdf


More than 1 in 7

15% of US adults are estimated to have chronic kidney disease—that is about 30 million people.

CKD IS MOST COMMON AMONG AFRICAN AMERICANS

https://www.cdc.gov/kidneydisease/pdf/kidney_factsheet.pdf

CKD HAS KNOWN RISK FACTORS

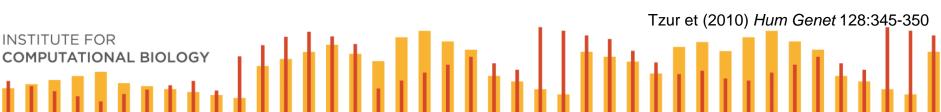
Age

Female

Type 2 diabetes

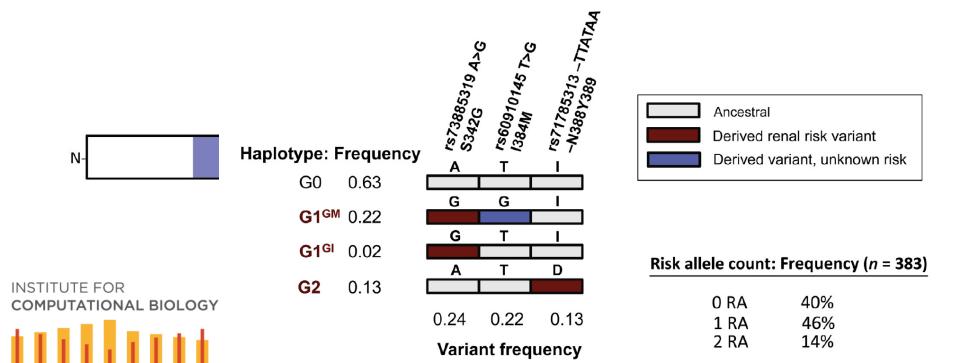
Hypertension

African-descent

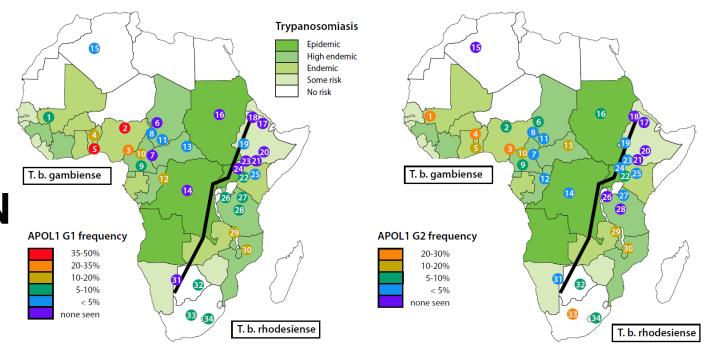


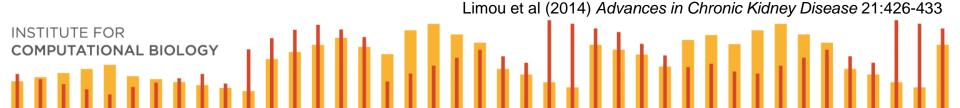
GENETICS AND CKD HEALTH DISPARITY

Common APOL1 missense variants are associated with end-stage renal disease


	•								1
rs number	Gene	Туре	Chr22 location ^a	Allelesb	YRI risk frequency ^c (%)	CEU risk frequency (%)	Mode ^d	OR _I	value
rs73885319 ^e	APOL1	exon 5	34,991,852	A/G	46	0	Recessive	6.7	2.71E-06
		S342G missense					Additive	2.22	2.38E-08
							Dominan	2.23	3.11E-06
rs60910145	APOL1	exon 5	34,991,980	T/G	45	0	Recessive	6.74	9.89E-06
		I384M missense					Additive	2.28	3.00E-08
				•			Dominan	2.32	4.75E-06

*Accounts for up to 70% of observed disparity



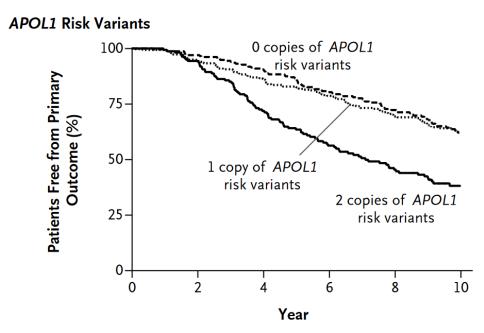

APOLIPOPROTEIN L1 (APOL1) RENAL RISK VARIANTS

Limou et al (2014) Advances in Chronic Kidney Disease 21:426-433

APOL1 AND NATURAL SELECTION

APOL1 AND PRECISION MEDICINE

Genetic testing for risk prediction?


Parsa et al (2013) *NEJM* 369:2183-2196

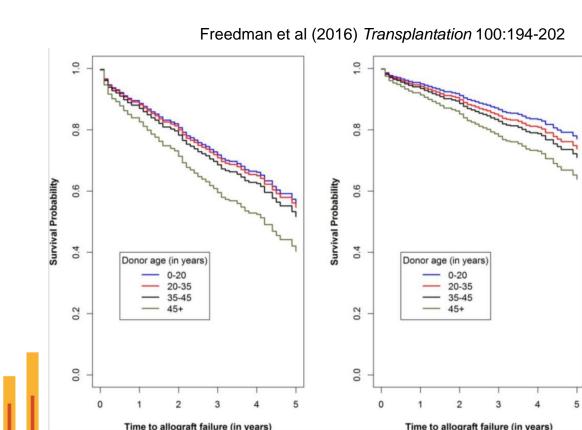
Lifetime risk of CKD

INSTITUTE FOR

COMPUTATIONAL BIOLOGY

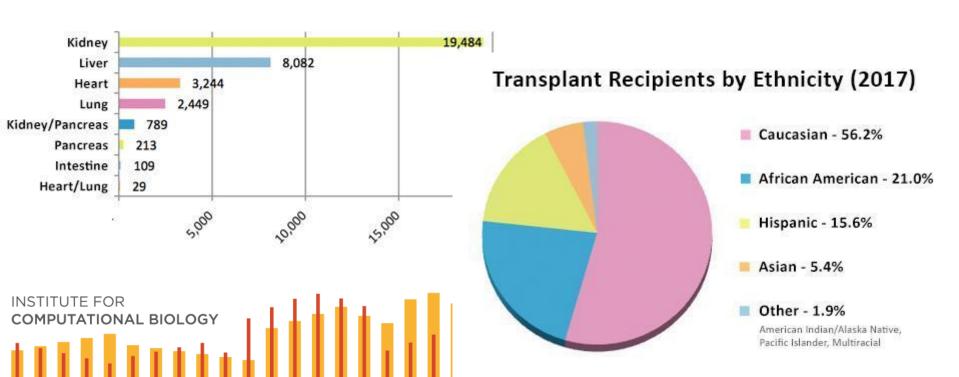
 Maybe predicts progression of disease

APOL1 AND PRECISION MEDICINE


Genetic testing for kidney transplants?

Carrier donors

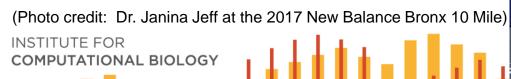
Donated organs


INSTITUTE FOR

COMPUTATIONAL BIOLOGY

KIDNEY TRANSPLANTS

Transplants Performed in 2017 by Organ


Setting	Pros	Cons				
Transplantation	Evidence for decreased cadaveric transplant survival	No evidence of decreased transplant survival based of recipient genotype				
Kidney Disease Prevention	Right of transplant recipient to know if living donor kidney has <i>APOL1</i> genotypes Living donors have a right to know whether they might be at increased risk of kidney disease, based on their <i>APOL1</i> genotype Testing for <i>APOL1</i> to institute preventive measures for development of kidney disease, such as hypertension, obesity, diabetes control Increased risk of non-diabetic kidney ESRD	high risk genotypes have decreased kidney survival				
Screening	Piece of mind in knowing test results	genotypes Increased anxiety, fear, and mistrust of the medical establishment, since evidence of risk is currently unknown				

RETURN OF RESEARCH RESULTS, A TREND

???

- Survey patients about research participation and return of results
- Ascertain participants for biospecimen collection and 'omics

	Demographic Group	Weighted N	% who said the study definitely or probably should be done	Beta	S.E.	p-value	% definitely or probably willing to participate in hypothetical biobank	Beta	S.E.	p-value
Total		2,601	79%				54%			
Gender	Men	1,251	77%	-0.160	0.098	0.10	54%	0.007	0.080	0.93
	Women	1,350	80%	ref			54%	ref		
Race and Ethnic Group	White, non- Hispanic	1,721	79%	ref			53%	ref		
	Black, non- Hispanic	296	77%	-0.032	0.156	0.84	55%	0.100	0.131	0.44
	Hispanic (all races)	385	78%	0.136	0.149	0.36	59%	0.291	0.123	0.02
	Other non- Hispanic	200	81%	0.555	0.541	0.31	56%	0.058	0.167	0.73
Survey language, among Hispanics	Spanish	186	80%	0.159	0.252	0.53	61%	0.383	0.205	0.06
	English	199	80%	ref			56%	ref		
Age	21–29	447	81%	-0.047	0.048	0.32	60%	-0.156	0.039	<0.0001
	30–44	694	80%				58%			
	45–59	735	79%				53%			
	60+	724	77%				47%			

Kaufman et al (2016) *PLoS One* 11(8):e0160461 **INSTITUTE FOR** COMPUTATIONAL BIOLOGY

RETURN OF RESULTS AND PARTICIPATION

9 out of 10 national survey respondents want individuallevel data returned

Kaufman et al (2008) Genet Med 10(11)831-839

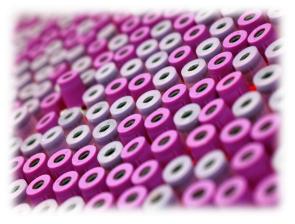
3 out of 4 national survey respondents want genetic results returned

Kaufman et al (2016) PLoS One 11(8):e0160461

Two-thirds of respondents would be less likely to participate if return of results were not offered Kaufman et al (2009) *Genet Med* 11(5):329-337

INSTITUTE FOR COMPUTATIONAL BIOLOGY

103 patients surveyed at Nephrology Clinic



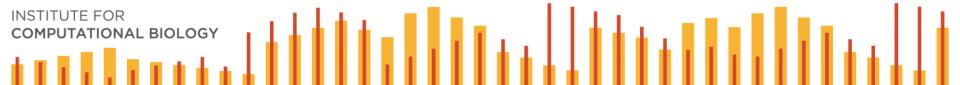
- 50% African American
- 54% female
- Mean age 61.45 years (range: 18 – 91 years)

Would you be willing to allow your health records and genetic information to be stored in a national biorepository coordinated by the government as a part of their "Precision Medicine Initiative"? If so this information may be available to researchers nationally and internationally with the understanding that your privacy would be protected.

71% YES 69% YES

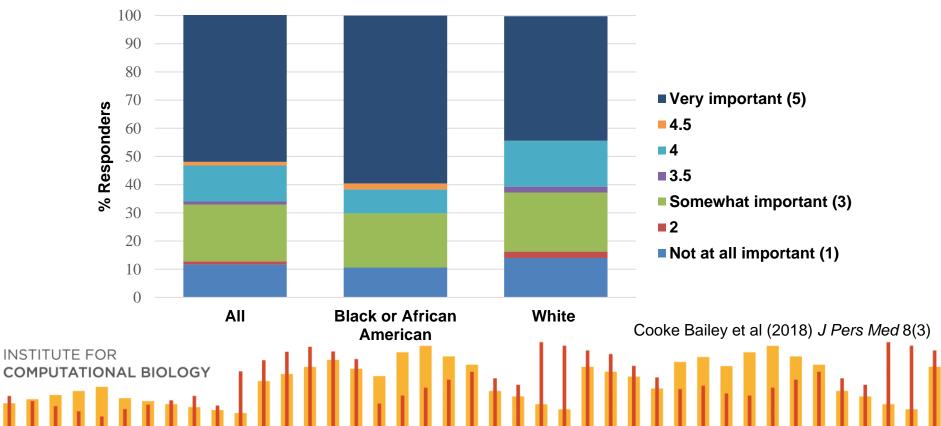
Cooke Bailey et al (2018) J Pers Med 8(3)

If you participated in a study that collected your genetic and health information, how important is it to you that you receive results from the study? Circle the number that is closest to how you feel.



Cooke Bailey et al (2018) J Pers Med 8(3)

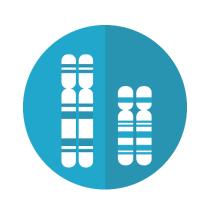
- 4


- **3**

Very important

RETURN OF RESEARCH RESULTS IS IMPORTANT

What type of results would you like to receive, please check all that apply


A – Information about average results – no personal results

B – Information about yourself your doc may have already told you

C – Information about your genes that may influence your doc's approach to care

D – Information about your genes that has uncertain significance and won't change treatment

E – I do not want to receive any results

~77% GENETICS (C)

~11% NOTHING

Cooke Bailey et al (2018) J Pers Med 8(3)

INSTITUTE FOR

COMPUTATIONAL BIOLOGY

SUMMARY

- APOL1 explains much of CKD observed disparity in prevalence
- APOL1 renal risk variants common among (West)
 African-descent populations
- Data are still needed to understand the risks and benefits of APOL1 genotyping in precision medicine

PRECISION MEDICINE RESEARCH IS MULTIDISCIPLINARY

Biostatistics Computer Genomics Medicine Bioethics Science **Bioinformatics** Genetics

WHAT DEGREES AND TRAINING DO YOU NEED?

Genetics and Molecular Biology Emory University 2000

EIS 2000-2002

Genome Sciences
University of Washington
2002-2006

WHAT DEGREES AND TRAINING DO YOU NEED? PhDs in Human Genetics

Logan

Research Scientist (Academia)

Industry Scientist

Staff Scientist (Industry)

Technical Writer

Nicole

Staff Scientist (Industry)

Brittany

NIH Post-doc .

INSTITUTE FOR COMPUTATIONAL BIOLOGY

WHAT DEGREES AND TRAINING DO YOU NEED? BIOETHICS AND HUMAN GENETICS

Aaron Goldenberg, PhD
Associate Professor
Case Western Reserve University

Jessica Cooke Bailey, PhD Assistant Professor Case Western Reserve University

WHAT DEGREES AND TRAINING DO YOU NEED? BIOINFORMATICS, COMPUTATIONAL BIOLOGY, COMPUTER SCIENCE

Sarah Pendergrass, PhD, MS
Assistant Professor
Geisinger Health System

Will Bush, PhD, MS
Assistant Professor
Case Western Reserve University

WHAT DEGREES AND TRAINING DO YOU NEED? BIOMEDICAL INFORMATICS AND DOCTORATE OF MEDICINE

David Kaelber, MD Chief Informatics Officer MetroHealth System

John Sedor, MD John O'Toole, MD Nephrologists
Cleveland Clinic

WHAT DEGREES AND TRAINING DO YOU NEED? BIOSTATISTICS, DATA MANAGEMENT/ARCHITECTS

Kristin Brown-Gentry, MS (Health Outcomes Scientist, Magellan Health)

Robert Goodloe, MS (Consultant Statistician, Eli Lilly)

Bob McClellan, BS (Senior Application Developer, Vanderbilt University Medical Center)

Jonathan Boston, BS (Software Developer, Cicayda)

ACKNOWLEDGEMENTS

John Sedor, MD

John O'Toole, MD

ICB Pilot Study grant

Kidney Foundation of Ohio

NIH KL2TR000440

NIH DK097836

NIH DK108329

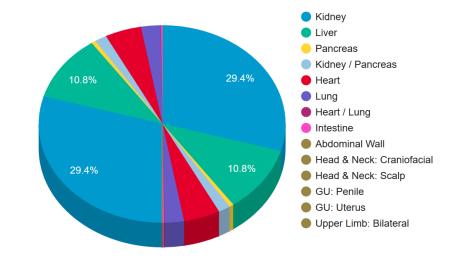
NIH DK083912

NIH DK100846

NIH DK114908

Will Bush, PhD, MS

Jessica Cooke Bailey, PhD


Aaron Goldenberg, PhD, MA, MPH

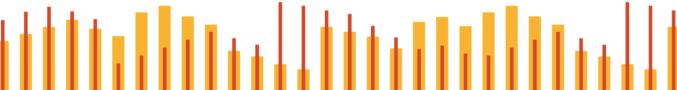
Transplants By Organ Type January 1, 1988 - September 30, 2018 Based on OPTN data as of October 11, 2018

Unos.org

Organ	Transplants				
Kidney	440,926				
Liver	162,094				
Pancreas	8,713				
Kidney / Pancreas	23,546				
Heart	71,513				
Lung	37,713				
Heart / Lung	1,256				
Intestine	2,991				
Abdominal Wall	1				
Head & Neck: Craniofacial	6				
Head & Neck: Scalp	1				
GU: Penile	2				
GU: Uterus	12				
Upper Limb: Bilateral	6				
Upper Limb: Unilateral	4				

Survey Summary and Comparisons:

Higher willingness to participate
 70% v ~54%*



- Same willingness to send data via phone app 48% v ~43% (to share social media data)*
- Same interest in genetic data
 77% (at least) v 74%*

Cooke Bailey et al (2018) J Pers Med 8(3)

*Kaufman et al (2016) PLoS One 11(8):e0160461

Would you be willing to install a free phone app that would be able to track your physical activity, measures of your health and location with the understanding that your privacy would be protected?

38% YES 46% YES

Would you be willing to allow the information collected using the phone app (question 3) to be sent to the national coordinating center where it may be shared with researchers nationally and internationally with the understanding that your privacy would be protected?

37% YES 54% YES

