MIND THE GAP

RESOURCES REQUIRED TO RECEIVE, PROCESS, & INTERPRET RESEARCH-RETURNED WHOLE GENOME DATA

FARREN BRIGGS, PHD SCM Assistant Professor, Case Western Reserve University

DEPARTMENT OF POPULATION AND QUANTITATIVE HEALTH SCIENCES

OVERVIEW OF RETURNING WHOLE GENOME DATA

- WHERE IT ALL BEGAN
- WHO ARE POTENTIAL STUDY PARTICIPANTS?
- WHAT GENETIC RESULTS/DATA MIGHT BE RETURNED?
- HOW MIGHT GENETIC RESULTS/DATA BE RETURNED?
- How to interpret returned genetic data?
- EXPLORE MY GENETIC DATA

U.S. FEDERAL INVESTMENT

"Tonight I'm launching a new Precision Medicine Initiative to bring us closer to curing diseases like cancer and diabetes.

And to give us all access to the personalized information we need to keep ourselves and our families healthier."

> **President Barack Obama** 2015 State of the Union Address | January 20, 2015

GENETICS GOES HOLLYWOOD TO DOCU-SERIES

DIRECT TO CONSUMER GENETIC TESTING (DTC-GT)

Number of companies providing direct-to-consumer (DTC) genetic testing worldwide as of 2016, by category

CELEBRITY TESTIMONIALS

<image>

POTENTIAL RESEARCH PARTICIPANTS WANT THEIR RAW GENETIC DATA

Figure 1 Interest in receiving raw genomic data.

Q: If you were given all of your raw genomic data from a research study, what would you do with this? (n=6944)
A: "I would seek out an interpretation of it" 62% (n=4320)

- 60% said "I'd analyse it myself" (n=2581) (Within the different professional groups, these are the percentages who would analyse the data themselves: 81% genomic researchers, 68% genetic health professionals, 56% other health professionals 56% public)
- 57% said "I would ask for a referral to my local clinical genetics service" (n=2459)
- ► 43% said "I would ask my GP or Primary Care Physician" (n=1844)
- ▶ 41% said "would find a genomics researcher and ask them" (n=1775)
- 15% said "I would pay a commercial genetics company to analyse the data" (n=658)
- 5% had other suggestions: eg, "use google", "I would ask my bioinformatician colleagues", "I would share it on GitHub", "ask a genetic counsellor", "I would open source it to anyone online", "I would refer the raw data in a zip file to a company like 23andMe", "I would want information about interpreting the data before deciding how to proceed" (n=237)

RESEARCH PROGRAMS ARE NOW RETURNING GENETIC DATA

Project	Dates	# genomes sequenced to-date	Platform	Results Returned	Report to Health Record	Uninterpreted Data to Participants	Accredited Lab	Last updated
Harvard PGP	2005-	352	WGS	Filtered Variants w/ Lit Annot	No	Yes (Variants)	No	Nov 2017
BWH/Harvard MedSeq	2011-	110	WGS	Monogenic, Common, PGx	Yes	FASTQ	Yes	Nov 28, 2017
Mount Sinai HealthSeq	2012– 2015	40	WGS	Monogenic, Common, PGx	No	BAM, VCF	No	paper
Mayo "10 scientists"	2012– 2014	10	WES	Monogenic	No	Yes	No	paper
Institute for Systems Biology (ISB) Pioneer 100	2014	108	WGS	Monogenic, Common, PGx	No	BAM, VCF	No	paper
BWH/BCH/Harvard BabySeq Project	2015–	160	WGS	Monogenic, PGx	Yes	FASTQ	Yes	Nov 2017
Nevada Institute of Personalized Medicine	2015–	0	WES	Monogenic, PGx	No	BAM, VCF	No	paper
NYGC Seeq.io	2016-	~500	WGS	ancestry, microbiome	No	BAM	No	Feb 2017
NIH All of Us	2017-	?	WGS	ACMG 59, PGx	?	?	Yes	Paper 8/15/2019
100,000 Genomes Project (UK)	2015-	44,633	WGS	Monogenic, PGx	Yes	Yes	es	January 2018

12/10/2018 NIH All of Us Webinar:

Genomic Data returned includes: PGx, AMCG pathogenic findings, Ancestry data, and Raw data files

Modified table from https://github.com/jasonbobe/sharing-genome-studies/blob/master/table.md; Hum Genomics. 2018 Feb 17;12(1):7. doi: 10.1186/s40246-018-0139-5. https://github.com/jasonbobe/sharing-genome-studies/blob/master/table.md; Hum Genomics. 2018 Feb 17;12(1):7. doi: 10.1186/s40246-018-0139-5. https://github.com/jasonbobe/sharing-genome-studies/blob/master/table.md; Hum Genomics. 2018 Feb 17;12(1):7. doi: 10.1186/s40246-018-0139-5. https://allofus.nih.gov/sites/default/files/genetic-counseling-resource-funding-opportunity-webinar-december-10-2018.pptx

WHO ARE POTENTIAL STUDY **PARTICIPANTS?**

WHO WILL BE A PART OF ALL OF US?

- Longitudinal cohort of ≥ 1,000,000 or more people living in the United States
- Goal: "to accelerate research and improve health.. Uncover(ing) paths toward delivering precision medicine – or individualized prevention, treatment, and care – for all of us"
- How: By taking into account individual differences in lifestyle, socioeconomics, environment, and biology.

Persons in underrepresented populations will be **prioritized**.

The target percentage of persons in racial and **ethnic minorities** is >45% and that of persons in **under-represented** populations is >75%.

GEOGRAPHY

20

32,180

HI: 40 participants (0.02%)

Outreach o

100+ Funded Partner Organizations

370+ Sites Collecting Samples and Measurements

KY: 20 participants (0.01%)

VT: 60 participants (0.03%)

AGE, SEX, & RACE/ETHNICITY

EDUCATION

ANNUAL HOUSEHOLD INCOME

HEALTH STATES

OTHER MAJOR USA POPULATION TRAITS 2019 INTERNET ACCESS

do not use the internet U.S. adults 10% 10 Men Women White Black 15 Hispanic 14 Ages 18-29 0 30-49 3 50-64 65+ <\$30K 18 \$30K-\$49,999 \$50K-\$74,999 3 \$75K+ 2 Less than HS 29 High school 16 Some college 5 College+ 2 Urban Suburban Rural 15

% of U.S. adults who say they

Note: Whites and blacks include only non-Hispanics. Hispanics are of any race. Source: Survey conducted Jan. 8-Feb. 7, 2019.

PEW RESEARCH CENTER

Race/Ethnicity

Education

https://www.pewresearch.org/fact-tank/2019/04/22/some-americans-dont-use-the-internet-who-are-they/

https://www.pewinternet.org/fact-sheet/internet-broadband/

OTHER MAJOR USA POPULATION TRAITS 2019 INTERNET ACCESS

Access to broadband and nonhandheld computers **much lower**

Race/Ethnicity

https://www.pewresearch.org/fact-tank/2019/04/22/some-americans-dont-use-the-internet-who-are-they/

https://www.pewinternet.org/fact-sheet/internet-broadband/

OTHER MAJOR USA POPULATION TRAITS DIGITAL ILLITERACY

WHAT CURATED GENETIC RESULTS/DATA MIGHT BE RETURNED?

WHOLE GENOME SEQUENCING (WGS) AND WHOLE EXOME SEQUENCING (WES)

RETURNING CURATED GENETIC FINDINGS

ACMG 59

Pharmacogenes

CURRENT RECOMMENDATIONS FOR 2° FINDINGS IN CLINICAL WES/WGS

Secondary finding – a result not related to test indication

Example: WES was ordered for a female patient with family history of breast and ovarian cancer

- Order was likely for **BRCA1/BRCA2** variants
- Data also reveal an *LDLR* mutation associated with familial hypercholesterolemia
- ACMG recommends reporting both BRCA1/BRCA2 AND LDLR findings to patient

CURRENT RECOMMENDATIONS FOR 2° FINDINGS IN CLINICAL WES/WGS

Kalia et al (2017) Genet Med 19:249-255

American College of Medical

Genetics and Genomics

Translating Genes Into Health®

CURRENT RECOMMENDATIONS FOR 2° FINDINGS IN CLINICAL WES/WGS

Characteristics of "ACMG 59":

Condition has established prevention, intervention, or treatment strategies

Gene has known highly penetrant mutations

Example: Brugada syndrome and **SCN5A** lle176Val (LOF)

Cardiac arrhythmia associated with sudden death

Implantable cardioverter-defibrillator is established prevention strategy

24

CHALLENGES FOR SECONDARY FINDINGS IN CLINICAL WES OR WGS

ACMG recommends reporting known and expected pathogenic variants

ClinVar Variant Classification

• American College of Medical Genetics and Genomics ACMG STANDARDS AND GUIDELINES Genetics in Medicine

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

Variants are classified by consequence

The star rating represents variant's review status, an indication of classification confidence

Variants are classified by consequence

The star rating represents variant's review status, an indication of classification confidence

Reviewed by Expert Panel (e.g., CPIC)

Variants are classified by consequence

The star rating represents variant's review status, an indication of classification confidence

Criteria provided; multiple submitters; no conflicts

Variants are classified by consequence

The star rating represents variant's review status, an indication of classification confidence

Criteria provided; multiple submitters; conflicts

Variants are classified by consequence

The star rating represents variant's review status, an indication of classification confidence

No assertion criteria provided

AN APPLICATION OF REPORTING 2° FINDINGS IN CLINICAL WES/WGS

Example: Geisinger required "pathogenic" variants to have

OR

2) Predicted loss of function

OR

Network Open.

Original Investigation | Genetics and Genomics

Exome Sequencing-Based Screening for *BRCA1/2* Expected Pathogenic Variants Among Adult Biobank Participants

3) Both

ACMG recommendations evolve over time

2013

56 gene-condition pairs

2016

59 gene-condition pairs

now including

including

ATP7B and Wilson disease BMPR1A and Juvenile polyposis SMAD4 and Juvenile polyposis OTC and ornithine transcarbamylase deficiency

The use of ACMG secondary findings recommendations for general population screening: a policy statement of the American College of Medical Genetics and Genomics (ACMG)

Population screening (?)

ACMG Board of Directors¹

The American College of Medical Genetics and Genomics (ACMG) has previously published policy statements on the reporting of secondary findings in clinical exome and genome sequencing (ACMG SF v1.0 and ACMG SF v2.0), also known as the "ACMG 56" and "ACMG 59," respectively.^{1,2} These recommendations specifically stated that "reporting some incidental [a.k.a. secondary] findings would likely have medical benefit for the patients and families of patients undergoing clinical sequencing" (ACMG board's emphasis). The ACMG SF v2.0 list of genes was not validated for general population screening. The use of ACMG SF v2.0 for purposes other than reporting incidental findings after clinical sequencing is not endorsed by ACMG.

ClinVar annotations change over time

ClinVar annotations change over time

HFE rs1800562 Hereditary hemochromatosis

2019

RETURNING CURATED GENETIC FINDINGS

ACMG 59

Pharmacogenes

THE GENETICS OF DRUG RESPONSE PHARMACOGENOMICS

FDA (2017) Drug Label for Warfarin dosing (Prevention and treatment of various thrombotic disorder)

Warfarin reduces the body's ability to make Vitamin K which interferes with protein creation

BLOOD CELLS	

Lower levels of clotting protein makes blood cells less likely to clot

			CYP2C9		
VNURGI	*1/*1	*1/*2	*1/*3	*2/*2	*2/*3
GG	5-7 mg	5-7 mg	3-4 mg	3-4 mg	3-4 mg
AG	5-7 mg	3-4 mg	3-4 mg	3-4 mg	0.5-2 mg
AA	3-4 mg	3-4 mg	0.5-2 mg	0.5-2 mg	0.5-2 mg

THE GENETICS OF DRUG RESPONSE PHARMACOGENOMICS

CPIC is an expert panel that

- Creates
- Curates
- Posts

Gene/drug Clinical Practice Guidelines that are

- Freely available
- Peer-reviewed
- Evidence-based
- Updatable

Pharmacogenomic recommendations VARY

by race/ethnicity or genetic ancestry

Multiple 2.48% European 78.39% All Asian 10.22% Non-European Non-Asian 3.31% 5.619 East Asian Multiple, 8.21% including European 2.46% Multiple. Other Asian African Hispanic or 2.01% 2.03% Latin American non-European 1.13% 0.01% Other and Greater Middle Eastern/

other admixed Native American/Oceanian

Ancestry category distribution

of individuals in GWAS catalog

Not enough data

available in non-Europeans; therefore, the **discovery** of pharmacogenes for diverse populations are lagging

HOW MIGHT CURATED GENETIC RESULTS/DATA BE RETURNED?

RETURN OF CURATED RESEARCH GENETIC RESULTS

The genetic test result

The genetic test result indicates whether a clinically actionable mutation is identified from the 25 genes analyzed.

If positive, the genetic mutation is detailed with appropriate nomenclature, and its clinical and functional significance.

Presence of genetic variants of uncertain significance (VUS) that are not currently considered clinically actionable, are reported.

Personal report via snail mail

but

Not easily scalable Expensive (?) Mobile population

RETURN OF CURATED RESEARCH GENETIC RESULTS

Through your healthcare provider

but

RETURN OF CURATED RESEARCH GENETIC RESULTS

Through a Web-based tool

but

My46 enables individuals to manage their results from genetic testing, whether it is a single result being offered for return or the hundreds of results that can be offered for return from tests based on WES and WGS

live, grow, and develop.

testing results.

WHAT RAW WGS/WES DATA MIGHT BE RETURNED?

RETURNING RAW WGS/WES DATA

RETURNING RAW WGS/WES DATA

Name	Description	WES file size (GB)	WGS files size (GB)
BAM	<u>Binary Alignment/Map format</u> : nucleotide sequence with corresponding quality scores mapped to the reference genome, derived from raw data files using an alignment algorithm	~5–15	~150–250
VCF	<u>Variant Call Format</u> : files for storing variant bases relative to the reference genome, which are derived from sequence files using a variant calling algorithm; usually annotated with allele frequency and predicted consequence	~0.02	~0.2

+ 1GB reference

RETURNING RAW WGS/WES DATA VCF FORMAT

##fileformat=VCFv4.2 ##FORMAT=<ID=GT, Number=1, Type=Integer, Description="Genotype"> ##FORMAT=<ID=GP,Number=G,Type=Float,Description="Genotype Probabilities"> ##FORMAT=<ID=PL,Number=G,Type=Float,Description="Phred-scaled Genotype Likelihoods"> REF #CHROM POS ΤD ALT QUAL FILTER INFO FORMAT SAMP001 SAMP002 GT 20 1291018 rs11449 G А PASS 0/0 0/1 . 20 2300608 rs84825 C Т . PASS . GT:GP 0/1:. 0/1:0.03,0.97,0 20 2301308 rs84823 T G . GT:PL ./.:. 1/1:10,5,0 PASS

> VCF considered "interpreted" data files and **may** require an investigational device exemption from the FDA

HOW MIGHT RAW WGS/WES BE RETURNED?

RETURN OF RAW WGS/WES DATA

My46 enables individuals to manage their results from genetic testing, whether it is a single result being offered for return or the hundreds of results that can be offered for return from tests based on WES and WGS

RETURN OF RAW WGS/WES DATA

Other private storage tools

Q: If you were given all of your raw genomic data from a research study, what would you do with this? (n=6944)

A: "I would seek out an interpretation of it" 62% (n=4320)

- 60% said "I'd analyse it myself" (n=2581) (Within the different professional groups, these are the percentages who would analyse the data themselves: 81% genomic researchers, 68% genetic health professionals, 56% other health professionals 56% public)
- 57% said "I would ask for a referral to my local clinical genetics service" (n=2459)
- ▶ 43% said "I would ask my GP or Primary Care Physician" (n=1844)
- ▶ 41% said "would find a genomics researcher and ask them" (n=1775)
- 15% said "I would pay a commercial genetics company to analyse the data" (n=658)
- 5% had other suggestions: eg, "use google", "I would ask my bioinformatician colleagues", "I would share it on GitHub", "ask a genetic counsellor", "I would open source it to anyone online", "I would refer the raw data in a zip file to a company like 23andMe", "I would want information about interpreting the data before deciding how to proceed" (n=237)

gyanwali o

gyanwali o

Converting .vcf to .csv??

Personally I use vcftools http://vcftools.sourceforge.net/index.html

The quickest way to convert a vcf to 23andMe assuming you have Linux, and your vcf already has dbSNP IDs assigned is with Plink, using the following plink command:

./plink --vcf example.vcf --recode 23 --chr 1-23 --out example.txt

How do you use that? I tried opening it but it doesnt exactly run.

gyanwali o

How do you use that? I tried opening it but it doesnt exactly run.

- 1. Download Plink 1.9 from here: https://www.coggenomics.org/plink/1.9/.
- 2. Extract the zip file to the same folder where your VCF file is located.
- 3. Download these two text files to the same folder: v3snps.txt & Xv3.txt
- 4. Start the command prompt (type cmd in your windows search bar) and change the directory to where your file is located.
- Command example (just copy-paste your file directory after cd): cd your_file_directory
- 5. Then type: plink --vcf your_filename.vcf.gz --extract v3snps.txt --snps-only --out 23andme.txt
- 6. Open the 23andme.txt, go to the end of the document and copy-paste the content of Xv3.txt, and save. Done. Shouldn't take more than 5 minutes.

Using the UNIX/LINUX Environment...

Q: Who of the public will be able to do this?

DNA Genics - DNA Kit Studio - https://www.dnagenics.com - v2.7	- 🗆 X
DNA Kit Studio v2.7 https://www.dnagenics.com/ Please, make a donation to support the development of this tool	Everyone has a story what's yours?
RAW Tools VCF Tools Genome Tools Support	_
VCF Converter VCF MTDNA	> Started conversion > Matching by Position
VCF CONVERTER This tool converts a VCF/gVCF to RAW file formats such as 23andme, Ancestry, FTDNA, MyHeritage, LivingDNA.	<pre>> The source RAW file contains 668942 SNPs > Conversion in progress > The output RAW file contains 668011 SNPs</pre>
VCF File Input * Browse Convert	> Finished conversion
Raw Data Output * Browse Stop	
Output format 23andme ~	
Use Raw Data Template Srowse	
Annotate Using Reference Browse	
Options	
When using a RAW template match by 🔿 by RSID 💿 by Position	
✓ Write SNPs when the RSID is not identified	
✓ Fix genotype orientation	
Extract all chromosomes	

HOW TO INTERPRET GENETIC DATA?

My Genetic Profile

* Immediate family approved *public* sharing

Subscribe 🛛 🖉 🏜 🐝 Farren Briggs 🗸 **Ethnicity Estimate** Updates 🚯 England, Wales & Northwestern Europe 46% North West England & the Isle of Man The Midlands, England Southern Asia 24% Western & Central India 9% Cameroon, Congo, & Southern Bantu 5% > Peoples Ireland & Scotland 5% Ivory Coast/Ghana 4% 3% Sweden Benin/Togo 2% 🔵 Mali 1% 1% Senegal

My Genetic Traits

Facial Hair Thickness

Your DNA suggests you (or your close male relatives) have less thick facial hair.

Does your beard—or the beards of the men in your family—match what your genes suggest? We looked at one genetic marker, or location in your DNA, to make our estimate. But other things can influence facial hair.

Genetics and Other Factors

For this test we looked at one gene, LNX1, which seems to influence facial hair thickness.

ARTICLE

Received 13 Jul 2015 | Accepted 25 Jan 2016 | Published 1 Mar 2016

DOI: 10.1038/ncomms10815 OPEN

A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features

This test is shown to matches as Farren Briggs 📑 Linked to Farren Briggs

NEW Introducing AncestryDNA Traits

Explore more about what your DNA has to say about you. This new experience lets you learn, compare, and share discoveries about the appearance and sensory traits in your genetic makeup.

Learn more

Study	Population	Sample Size	G (ref allele)
The PAGE Study	Native Hawaiian	4,478	0.37
The PAGE Study	Asian	8,232	0.38
1000Genomes	South Asian	978	0.41
1000Genomes	East Asian	1,008	0.41
1000Genomes	African	1,322	0.41
gnomAD - Genomes	East Asian	1,546	0.42
The PAGE Study	South Asian	846	0.42
gnomAD - Genomes	African	8,676	0.45
The PAGE Study	African American	32,212	0.46
The PAGE Study	Dominican	3,782	0.52
The PAGE Study	Cuban	4,198	0.57
The PAGE Study	Central American	2,412	0.58
gnomAD - Genomes	Ashkenazi Jewish	288	0.58
The PAGE Study	Puerto Rican	7,844	0.58
The PAGE Study	Native American	1,246	0.61
gnomAD - Genomes	American	846	0.61
The PAGE Study	Mexican	10,684	0.61
1000Genomes	Europe	1,006	0.64
The PAGE Study	South American	1,958	0.64
gnomAD - Genomes	Other	1,086	0.65
1000Genomes	American	694	0.65
gnomAD - Genomes	European	18,842	0.67

My Genetic Traits

This test is shown to matches as Farren Briggs 🖃 Linked to Farren Briggs

NEW Introducing AncestryDNA Traits

Explore more about what your DNA has to say about you. This new experience lets you learn, compare, and share discoveries about the appearance and sensory traits in your genetic makeup.

Learn more

Cleft Chin

The DNA we tested tells us you probably have a cleft chin.

Omega-3

People with DNA like yours can sometimes have average omega-3 levels

Vitamin E

People with DNA like yours can sometimes have slightly lower vitamin E levels

I also probably have a unibrow, skin pigmentation, lighter hair...

Genome-Wide Association Study Identifies Three Common Variants Associated with Serologic Response to Vitamin E Supplementation in Men¹⁻⁴

Jacqueline M. Major,⁵ Kai Yu,⁵ Charles C. Chung,⁶ Stephanie J. Weinstein,⁵ Meredith Yeager,⁶ William Wheeler,⁷ Kirk Snyder,⁷ Margaret E. Wright,⁸ Jarmo Virtamo,⁹ Stephen Chanock,^{5, 6} and Demetrius Albanes⁵*

> Human Molecular Genetics, 2011, Vol. 20, No. 19 3876–3883 doi:10.1093/hmg/ddr296 Advance Access published on July 5, 2011

Genome-wide association study identifies common variants associated with circulating vitamin E levels

THIRD PARTY INTERPRETATION (TPI) TOOLS

"Personalize your list of supplements unique to your genetics"

"Learn how to fix your brain according to your DNA make-up."

Genes

HOW MANY TPI TOOLS WOULD PEOPLE USE?

Survey of 870 DTC-GT consumers who downloaded their genetic data

Chart: The Conversation, CC-BY-ND · Source: Nelson SC, et al. AJHG 105, 122-133, July 3, 2019

WHICH TPI TOOLS DID USERS TURN TO?

Survey of 870 DTC-GT consumers who downloaded their genetic data

Chart includes tools mentioned by five or more users.

Chart: The Conversation, CC-BY-ND - Source: American Journal of Human Genetics, Nelson SC, et al. AJHG 105, 122-133, July 3, 2019

My Health-Related Genetic Traits

\$12 USD + 47K SNPs from AncestryDNA

rs2802292	Less likely to live to 100.	Bad	10	2.5
rs1935949	1.27X likelihood of 'exceptional longevity'	Good	1	2

65

SNPedia

WHERE TO SEEK HELP?

r/promethease · Posted by u/Smlanza5 8 days ago

Can someone please explain this to me? Does this mean I carry a mutation on the STXBP2 gene? I carry a separate mutation on the MUNC13-4 gene, which also causes HLH (my son of passes away from this disorder). I need to know if I carry a separate HLH associated mutation or not.

AT&T	snort-sieeper ★ ≪ % ,.ill 87% ■ 7:58 AM
rs61736587(G	;G)
common in clinva	ar
aka c.1621G>A	(p.Gly541Ser) considered
pathogenic for f	familial hemophagocytic
lymphohistiocyt	tosis (HLH) in ClinVar

WHERE TO SEEK HELP?

Next steps:

PCP, Genetic Health Professional, Test family members, Share data.... Re-test ???

MACRO SUMMARY – MIND THE GAPS

WHO ARE OUR STUDY PARTICIPANTS?

EDUCATION, HEALTH STATUS, RESOURCES, LITERACY

HOW DO WE ENSURE EQUITY IN ACCESS, INTERPRETATION, & OPPORTUNITIES FOR ACTION?

DOES IT NEED TO BE EQUAL? WHAT ABOUT PRIVACY? RELATIVES?

How do we support participants over time? ACMG/PGX/CLINVAR FINDINGS CHANGE...

WHO BEARS THE ONUS?

PARTICIPANT, RESEARCHER, FUNDING AGENCY, GOVERNMENT?

ACKNOWLEDGEMENTS

DANA CRAWFORD, PHD

Associate Professor Department of Population and Quantitative Health Sciences Cleveland Institute for Computational Biology Case Western Reserve University

JESSICA COOKE BAILEY, PHD

Assistant Professor

Department of Population and Quantitative Health Sciences Cleveland Institute for Computational Biology Case Western Reserve University

Human Genetics (2019) 138:691–701 https://doi.org/10.1007/s00439-019-02033-5

REVIEW

Mind the gap: resources required to receive, process and interpret research-returned whole genome data

Dana C. Crawford^{1,2,3} · Jessica N. Cooke Bailey^{1,3} · Farren B. S. Briggs^{1,3}

Received: 4 April 2019 / Accepted: 27 May 2019 / Published online: 3 June 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Thank you (and mind the gap)