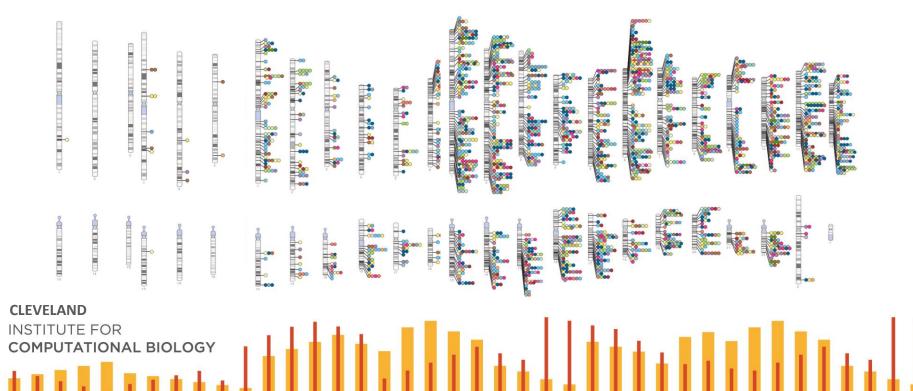
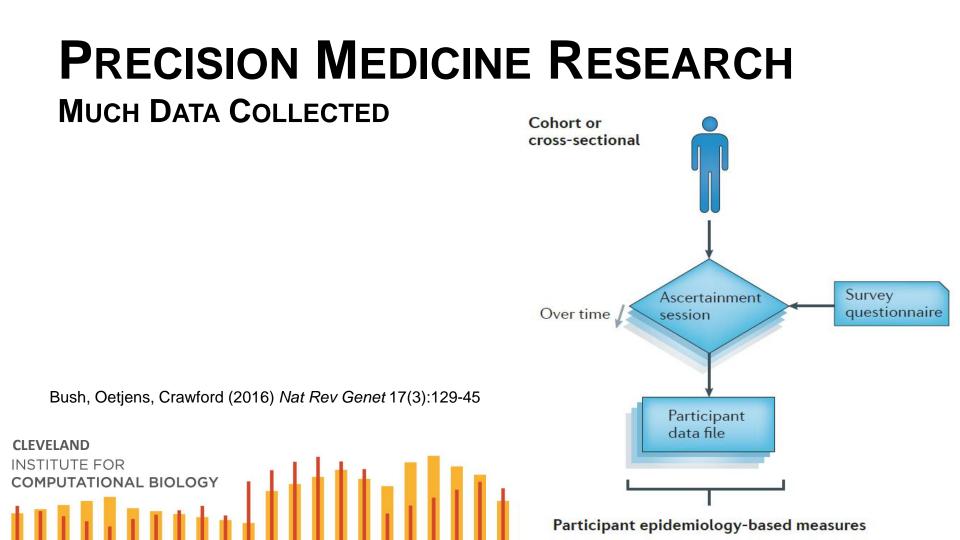
GENOMIC RESEARCH ENABLED BY ELECTRONIC HEALTH RECORDS


CLEVELAND INSTITUTE FOR COMPUTATIONAL BIOLOGY November 14, 2019

Dana C. Crawford, PhD Associate Professor Population and Quantitative Health Sciences Genetics and Genome Sciences

PRECISION MEDICINE THE CONCEPT

PRECISION MEDICINE RESEARCH MUCH DATA COLLECTED


GWAS as of 10/14:

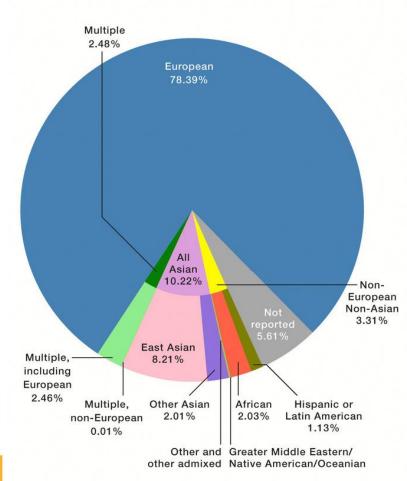
7,796 publications

159,202 SNP-Trait Associations

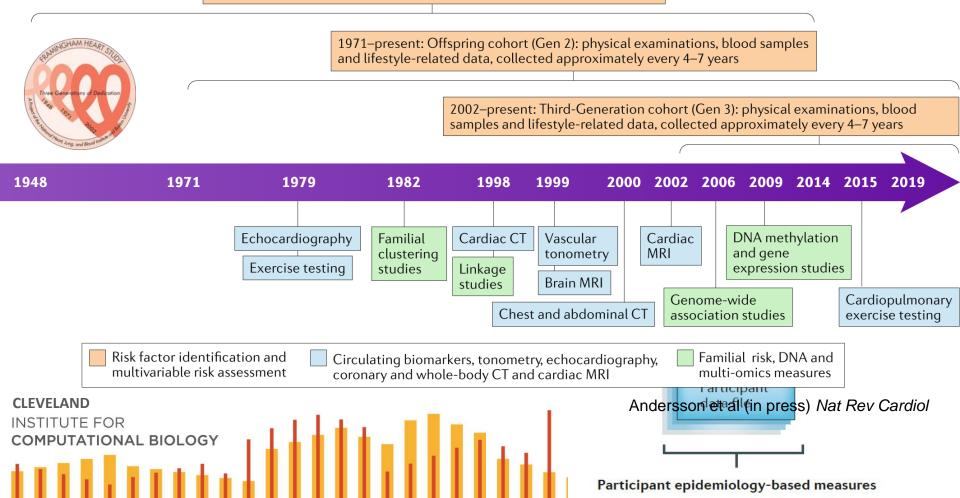
CLEVELAND INSTITUTE FOR COMPUTATIONAL BIOLOGY

PRECISION MEDICINE RESEARCH More Data Needed

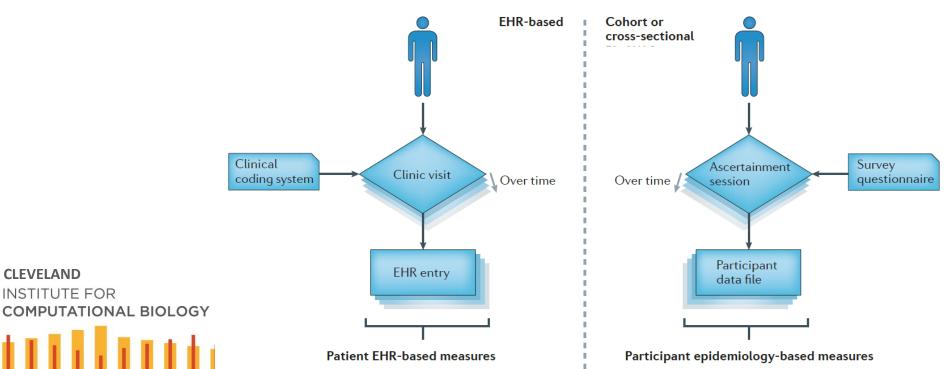
Cell


Leading Edge Commentary

The Missing Diversity in Human Genetic Studies


Sirugo, Williams, Tishkoff (2019) Cell 177(1):26-31

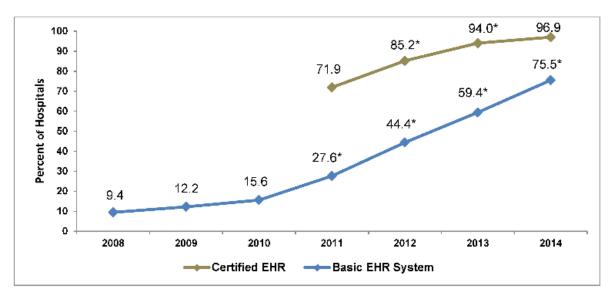
Ancestry category distribution of individuals in GWAS catalog

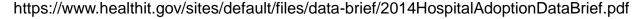


1948–2014: Original cohort (Gen 1): physical examinations, blood samples and lifestyle-related data, collected approximately every other year

ELECTRONIC HEALTH RECORDS ACCELERATING PRECISION MEDICINE RESEARCH

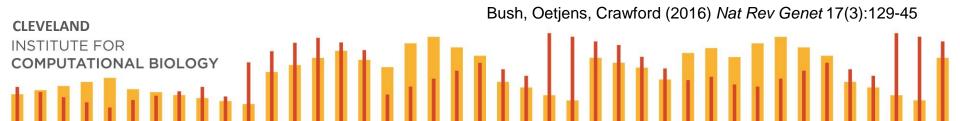
Bush, Oetjens, Crawford (2016) Nat Rev Genet 17(3):129-45


THE RAPID RISE OF EHRS



THE RAPID RISE OF EHRS

96% of reporting US hospitals have at least a basic EHR


ELECTRONIC HEALTH RECORDS ACCELERATING PRECISION MEDICINE RESEARCH

Patient EHR-based measures

250.0 T2DM	Yes
411.1 coronary syndrome	Yes
414.01 coronary artery disease	No
278.01 obesity	Yes
Alanine aminotransferase	15.6 units per l
Blood albumin	3.7 g per dl
Aspartate aminotrasferase	22 units per l
Bicarbonate (HCO ₃)	24 mEq per l
Carbon dioxide (CO_2)	27 mEq per l
Blood cholesterol	240 mg per dl
Blood creatinine	1.2 mg per dl

Participant epidemiology-based measures

Ever had diabetes?	Yes
Cancer ever diagnosed?	Yes
Ever smoked?	No
Allergic to gluten?	No
Allergic to peanuts?	Yes
Current weight	240 lb
Current height	5'8"
Green vegetables per week	2–4 servings
Red meat per week	6–8 servings
Blood cholesterol	275 mg per dl
Exercise time per week	30 min

COMPUTABLE PHENOTYPING

- Demographics
- Vitals

CLEVELAND

COMPUTATIONAL BIOLOGY

- Medical History
- Medical encounter
- Orders and prescriptions
- Laboratory tests

Structured and unstructured text

Structured

Structured data and unstructured text

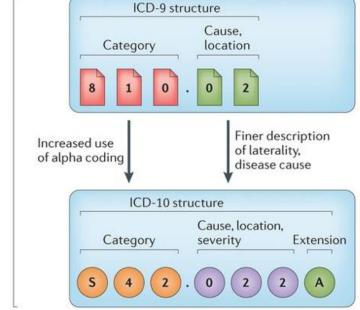
Structured data and unstructured text

Structured data

Structured data

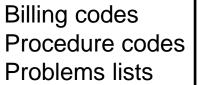
COMPUTABLE PHENOTYPING Structured Data

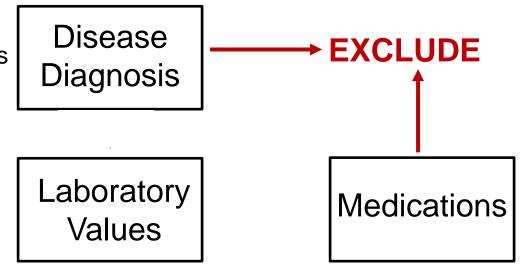
Bush, Oetjens, Crawford (2016) Nat Rev Genet 17(3):129-145


Billing Codes ICD-9-CM ICD-10-CM

CLEVELAND

INSTITUTE FOR


COMPUTATIONAL BIOLOGY


5× more diagnosis codes in ICD-10-CM (14,025 versus 69,823)

Gross anatomy of ICD-9 and ICD-10 codes

RULES-BASED ALGORITHMS

MILLION VETERAN PROGRAM (MVP)

- Funded by Department of Veterans Affairs Office of Research and Development
- Observational cohort of US Veterans (2011)
 - Biospecimens Genome-wide data Surveys Electronic health records

https://www.research.va.gov/MVP/default.cfm

CLEVELAND

INSTITUTE FOR

COMPUTATIONAL BIOLOGY

RULES-BASED ALGORITHMS IN MVP

PANA

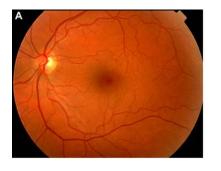
Halladay et al (2019) AMIA Joint Summits Transl Sci Proc 2019:153-162

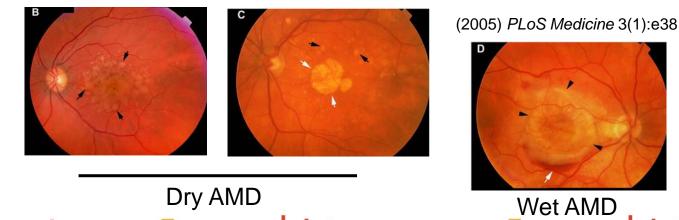
	Not Hispanic	Hispanic	Unknown
	(with genotypes)	(with genotypes)	(with genotypes)
African American	94,891	1,279	695
	(65,983)	(861)	(457)
Native American/ Alaska Native	4,562	962	29
	(3,101)	(647)	(18)
Asian	4,884	251	38
	(3,132)	(167)	(21)
Pacific Islander	1,778	474	54
	(1,126)	(307)	(27)
White	350,142	23,227	1,814
	(247,301)	(16,171)	(1,171)
Other and Unknown	7,413	6,741	4,793
	(5,106)	(4,615)	(2,742)
TOTAL	463,670	32,934	7,423
	(325,749)	(21,949)	(4,436)

AGE-RELATED MACULAR DEGENERATION

- Leading cause of adult-onset blindness
- Characterized by Deterioration of the macula Loss of central vision
- Two forms of AMD Atrophic (dry) Neovascular or exudative (wet)

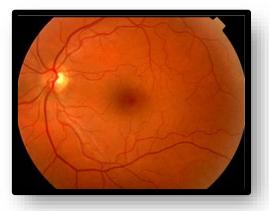
From mugumogu (on YouTube)


(AMD)


CLINICAL PHENOTYPE OF AMD

Fundus images showing

- Deposition of drusen within the retina
- Abnormal blood vessel growth (wet AMD)



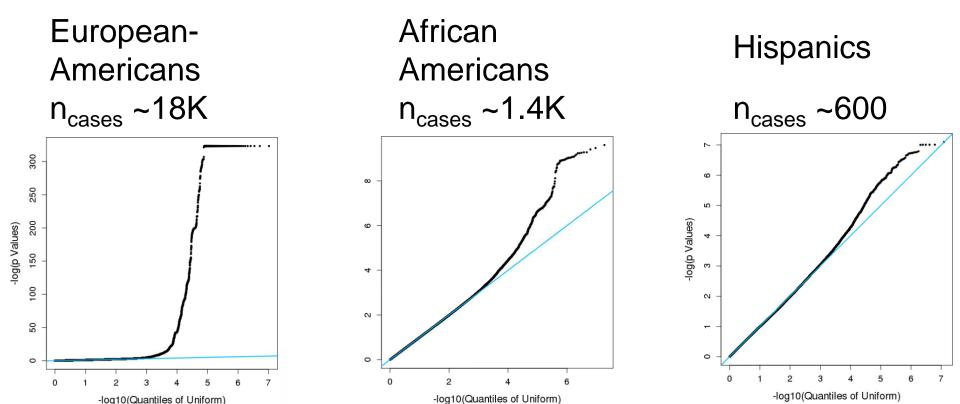
Normal

RULES-BASED ALGORITHMS AMD IN MVP

- MVP EHR hosted by Veterans Informatics and Computing Infrastructure (VINCI)
- No ophthalmology imaging data Fundus photography Fundus autofluorescence imaging Optical coherence tomography
- Must rely EHR structured data ICD-9-CM/10-CM codes CPT codes

⁽²⁰⁰⁵⁾ PLoS Medicine 3(1):e38

INSTITUTE FOR COMPUTATIONAL BIOLOGY


AMD case definition	AMD control definition
≥65 years of age	≥65 years of age
AND	AND
At least one mention within the last two years of CPT code 92004 OR CPT code 92014	At least one mention within the last two years of CPT code 92004 OR CPT code 92014
AND	AND
At least two mentions or only at the most recent visit to the Eye Clinic of ICD-9-CM codes 362.51 or 362.52 OR ICD-10-CM codes H35.31 or H35.32	Absence of ICD-9-CM codes 362.51 and 362.52 OR ICD-10-CM codes H35.31 and H35.32
AND	
Absence of ICD-9-CM code 362.55 OR ICD-10-CM code H35.389	Halladay et al (2019) <i>AMIA Joint Summits Transl Sci</i> Proc 2019:153-162

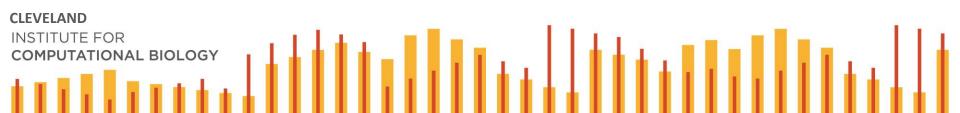
AMD ALGORITHM OPTIMIZATION

Algorithr (2 codes/ca		Case / Control age	<i>CFH</i> rs10801555 Odds ratio	<i>CFH</i> rs1080155 p- value	<i>ARMS2</i> rs10490924 Odds ratio	<i>ARMS2</i> rs10490924 p-value
1		65/65	1.775	1.81e-290	1.680	5.57e-201
2 More excl	lusions	65/65	1.775	6.90e-289	1.681	8.91e-201
1		50/60	1.746	5.85e-374	1.659	5.47e-259
2		50/60	1.747	2.42e-372	1.663	1.49e-259
3		50/65	1.689	2.73e-428	1.613	5.91e-293
3		50/60	1.667	6.40e-423	1.607	2.59e-298
4 More included		50/65	1.661	2.25e-431	1.600	2.26e-303
4		50/60	1.647	4.56e-424	1.588	2.36e-299

RULES-BASED ALGORITHMS AMD IN MVP

Unpublished

SUMMARY AMD AND MPV


- EHR codes alone can define AMD
 With high confidence
- Genetics can help optimize algorithms Optimization based on smallest p-value (discovery)

SUMMARY Algorithms and Genetics

- Requires EHRs linked to biobanks with DNA
- Requires phenotypes with known genetics
- Requires manual review

All will improve with more data and innovation!

ACKNOWLEDGEMENTS*

*This presentation does not represent the views of the Department of Veterans Affairs or the United States Government.

Eric Konicki **Neal Peachey** Tamer Hadi Rob Igo, Jr. Sudha Iyengar

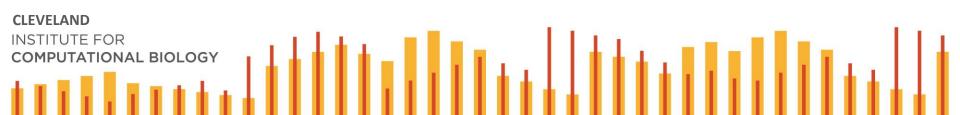
Matthew D. Anger Jack Sullivan Steven Fliesler

Chris Halladay Paul Greenberg Wen-Chih Wu

MVP Core Teams MVP participants Local sites

> **Providence VA** Medical Center

CASE WESTERN RESERVE


think beyond the possible'

101 BX003364 Research to Prevent Blindness

PRECISION MEDICINE RESEARCH IS MULTIDISCIPLINARY

Biostatistics Computer Genomics Medicine Omics Biomedical Big Human Clinical Data Bioethics Science **Bioinformatics** Genetics

WHAT DEGREES AND TRAINING DO YOU NEED?

Genetics and Molecular Biology Emory University 2000

INSTITUTE FOR COMPUTATIONAL BIOLOGY

EIS 2000-2002

Genome Sciences University of Washington 2002-2006

WHAT DEGREES AND TRAINING DO YOU NEED? PHDS IN HUMAN GENETICS

Logan

Research Scientist (Academia)

CLEVELAND INSTITUTE FOR COMPUTATIONAL BIOLOGY

Industry Scientist

Matt

Staff Scientist (Industry)

Jennifer

Technical Writer

Staff Scientist (Industry)

Brittany

NIH Postdoc

WHAT DEGREES AND TRAINING DO YOU NEED? BIOETHICS AND HUMAN GENETICS

Aaron Goldenberg, PhD Associate Professor Case Western Reserve University

Jessica Cooke Bailey, PhD Assistant Professor Case Western Reserve University

CLEVELAND INSTITUTE FOR COMPUTATIONAL BIOLOGY

WHAT DEGREES AND TRAINING DO YOU NEED? BIOINFORMATICS, COMPUTATIONAL BIOLOGY, COMPUTER SCIENCE

Sarah Pendergrass, PhD, MS Staff Scientist Genentech

CLEVELAND

COMPUTATIONAL BIOLOGY

Will Bush, PhD, MS Associate Professor Case Western Reserve University

WHAT DEGREES AND TRAINING DO YOU NEED? DOCTORATE OF MEDICINE

John Sedor, MD

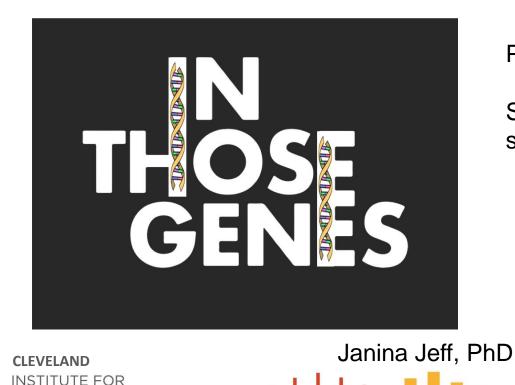
John O'Toole, MD

Nephrologists Cleveland Clinic

WHAT DEGREES AND TRAINING DO YOU NEED? BIOSTATISTICS, DATA MANAGEMENT/ARCHITECTS

Kristin Brown-Gentry, MS (Health Outcomes Scientist, Magellan Health)

Robert Goodloe, MS (Consultant Statistician, Eli Lilly)


Bob McClellan, BS (Senior Application Developer,

Vanderbilt University Medical Center)

Jonathan Boston, BS (Software Developer, Cicayda)

QUESTIONS?

COMPUTATIONAL BIOLOGY

Pilot streams December 10, 2019

Season 1 (46 Chromosomes and a Mule) streams February 4, 2020

