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Introduction

To date, more than a million
Individuals have been
included in GWAS and
seguencing association
studies for the mapping of
complex traits.

The vast majority of these
studies, however, have been
conducted in populations of
European ancestry

Nature paper (in press) by Dr.
Malia Fullerton and Alice
Popejoy (Univ. of Wash) show
only a 2% increase over the
last 5 years.

SAMPLING BIAS

Most genome-wide association studies have
been of people of European descent.

967

European
descent

4% Non-
European
descent

Bustamante et al. (Nature, 20L1)



Need for Genetic Studies
in Diverse Populations

Medical genomics has focused almost enfirely on those of
European descent.

Ofther race and ethnic groups must be studied to ensure that
more people benefit




Genetic Studies in Diverse
Populations

Recently, there has been an increased interest in
complex trait mapping in diverse populations

Trans-Omics for Precision Medicine (TOPMed)
Program recently funded by NHLBI

o Whole-genome-sequence (WGS) data currently being generated for
over 100,000 individuals

o Multi-ethnic cohort includes European Americans, African Americans,
Hispanics/Latinos, and Samoans.

« NIH launched the Precision Medicine Initiative
(PMI) in 2015

o PMI Cohort Program will build a large research cohort of one million
or more Americans

o Goalis to support and advance the targeted prevention and
treatment strategies that take an individual's unique characteristics
info account, including individual genome sequences, environmental
factors and lifestyles.



Admixed Populations

Populations who have experienced admixing
among continentally divided ancestral
populations within the past 200 to 500 years.

Admixed populations have largely arisen as @
consequence of historical events such as the
transatlantic slave trade, the colonization of
the Americas and other long-distance
migrations.

Examples of admixed populations include

o African Americans and Hispanics in the U.S
Latinos from throughout Latin America
Uyghur population of Central Asia

Cape Verdeans

O
O
O
o South African "Coloured" population
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HCHS/SOL

Hispanic Commgnity Health Study

The Hispanic Community Heath Study / Study of Latinos
(HCHS/SOL) is the largest epidemiological study of U.S.
Hispanics/Latinos

Initiated in 2006; funded by NHLBI & several other NIH institutes

Recruited 16,415 men and women who self-identify as
Hispanic or Latino

Aged 18-74 years, multiple household members eligible

Sample households in defined communities in Bronx, Chicago,
Miami, and San Diego

>2,000 subjects each of the following origins: Mexican, Puerto
Rican and Dominican, Cuban, Central and South American

Investigate prevalence and risk factors for (among others):
heart, lung and blood disorders kidney ana liver function,
diabetes, cognitive function, dental and periodontal
conditions, hearing disorders, sleep apnea



HCHS/SOL

Baseline exam at field center lasting ~ 7 hrs
Recruitment occurred over a 3-year period (2008-2011)

ggco)nd iIn person Visit (6 yr interval) in progress (2014-
17

Funding runs through 2019 for event follow-up

Events: Annual phone call to ascertain hospitalizations or
other significant clinical events

Medical records for events are obtained, reviewed and
adjudicated

2Dgs(i)gn paper Reference: Sorlie Annals of Epidemiology
]



Phenotypic Data at Baseline

Questionnaires

Health and Medical History
Family History
Acculturation

Social and Behavioral
Occupational

Health Care Access
24-Hour Dietary Recall and
food propensity questionnaire
Smoking

Alcohol Consumption
Physical Activity

Disability

Weight Loss/Gain

Sleep

Medication

Oral/Dental Health
Hearing

Medical Examinations

Blood Pressure

Pulmonary Function

Sleep Assessment

ECG

Anthropometry

Dental

Audiometry

Accelerometry/Physical
Activity

Specimen Collection
Fasting Blood

Laboratory Measurements

Lipids
Glucose
Insulin
Glycosylated hemoglobin
Iron
Creatinine
Cystatin C
ALT

AST

GGT
Ferritin
CRP

2 hour oral (75g) Glucose UIBC

Tolerance Test
Spot Urine
Storage of additional
blood and urine

CBC (w/ differentials)
Serology for Hep-A,-B,-C
Albumin (urine)
Creatinine (urine)



Demographic and Socioeconomic
Characteristics of HCHS/SOL

Characteristics ALL | Cuban Mexico | Puerto | Cent. | So.
(mean or %) Rican Am. | Am.

Unweighted N 15,079 2,201 1,400 6,232 2590 1,634 1,022
Age (yrs) 43.2 43.5 43.1 43.0 43.2 43.4 43.2
Men 40.1 46.8 34.6 37.9 41.8 39.4 40.8
(e el e =1L 69.5  45.0 73.6 73.2 92.7 62.6 53.9
years

Language

Preferred — 77.5 91.9 80.4 81.4 42.7 89.0 89.9
Spanish

College degree 15.3 20.2 15.6 12.4 14.5 14.8 224

Annual family

income >$50K 114 8.2 7.2 14.0 14.0 7.2 11.6

Health insurance 50.9 40.0 72.3 44.7 77.3 344 41.9



Genetic Studies in Ancestrally Diverse

Populations: Opportunities and Challenges
« Opportunities:

= |dentification of novel genetic variants underlying
phenotypic diversity and health disparities among
populations.

= Potential to provide new insights for health disparities
of minority populations for many complex diseases

» Challenges for complex trait mapping:
= Heterogeneous genetic background
= Confounding due to population stratification
= Familial structure and/or cryptic relatedness



Confounding due to
Admixed Ancestry

« Ethnic groups (and subgroups) often share distinct
dietary habits and other lifestyle characteristics that
leads to many traits of interest being correlated with
ancestry and/or ethnicity.

association ofinterest
Genotype » Trait




Cryptic Relatedness

» Failure to account for relatedness among sample

Individuals can lead 1o spurious association
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Cryptic Relatedness




Genetic Relatedness in
Admixed Populations

« The genealogy of individuals in a sample consists of:
o Distant genetic relatedness, such as population structure

o Recent genetic relatedness: pedigree relationships of close
relatives

« Samples from admixed populations often have

complex genealogy due to ancestry admixture and
both recent and distant genetic relatedness



Complex Genealogy of Racially
Admixed Populations




Recent versus Distant Genetic
Relatedness

» Distinguishing familial relatedness from ancesiry using
genotype data in diverse populations is difficult, as
both manifest as genetic similarity through the sharing

of alleles.

Ancestral Population

Time Current Population

Conomos et al. (AJHG, 2016) o



Deconvolution of Genetic Relatedness
« Conomos et al. [Am J Hum Genet, 2016]

ARTICLE

Model-free Estimation of Recent Genetic Relatedness

Matthew P. Conomos,'* Alexander P. Reiner,23 Bruce S. Weir,! and Timothy A. Thornton!.*

« Conomos et al. [Genet Epidemiol, 2015]

Genetic

Epidemiology
OFFICIAL JOURNAL
INTERNATIONAL GENETIC

Robust Inference of Population Structure for Ancestry @w&w&s&: SOCETY
Prediction and Correction of Stratification in the
Presence of Relatedness

Matthew P. Conomos,' Michael B. Miller,? and Timothy A. Thornton'*

 Thornton et al. [Am J Hum Genet, 2012]

ARTICLE

Estimating Kinship in Admixed Populations

Timothy Thornton,!* Hua Tang,? Thomas J. Hoffmann,** Heather M. Ochs-Balcom,5 Bette ]. Caan,®
and Neil Risch?4.6.*



Genetic Diversity in HCHS/SOL

ARTICLE

Genetic Diversity and Association Studies
in US Hispanic/Latino Populations: Applications
in the Hispanic Community Health Study/Study of Latinos

Matthew P. Conomos,14* Cecelia A. Laurie,’.14 Adrienne M. Stilp,'-'* Stephanie M. Gogarten, .14
Caitlin P. McHugh,! Sarah C. Nelson,! Tamar Sofer,! Lindsay Fernandez-Rhodes,2 Anne E. Justice,2
Mariaelisa Graff,? Kristin L. Young,? Amanda A. Seyerle,? Christy L. Avery,? Kent D. Taylor,?

Jerome I. Rotter,® Gregory A. Talavera,* Martha L. Daviglus,> Sylvia Wassertheil-Smoller,®

Neil Schneiderman,” Gerardo Heiss,? Robert C. Kaplan,® Nora Franceschini,? Alex P. Reiner,?

John R. Shaffer,° R. Graham Barr,10 Kathleen FE. Kerr,’ Sharon R. Browning,’ Brian L. Browning,!!
Bruce S. Weir,! M. Larissa Avilés-Santa,'2 George ]J. Papanicolaou,'? Thomas Lumley,’3 Adam A. Szpiro,!
Kari E. North,?2 Ken Rice,! Timothy A. Thornton,! and Cathy C. Laurie’*

A

Cuban Dominican Puerto Rican Mexican Central American South American
n=1779 n=968 n=1832 n=3845 n=1163 n=710

Ancestry
Europe
America
Afrlca




« Conomos et al. (2016) “Genetic Diversity and Association Studies in U.S. Hispanic/Latino
Populations: Applications in the Hispanic Community Health Study/Study of Latinos”
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Genetic differentiation among individuals is associated with the
geography of their countries of grandparental origin.
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America show geographic structure



Recent Genetic Relatedness Inference with

PC-Relate in HCHS-SOL
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Linear Mixed Models for GWAS

* Linear mixed models (LMMs) have emerged as
a powerful and effective approach for
genetic association testing in the presence of
sample structure

TECHNICAL REPORTS TECHNICAL REPORTS

nature
genetics genetics

Rapid variance components—based method for

Variance component model to account for sample - .
. . o . whole-genome association analysis
structure 1in genome -wide association studies
Gulnara R Svishcheva!, Tatiana I Axenovich!, Nadezhda M Belonogova!, Cornelia M van Duijn? &

Hyun Min Kang!>$, Jae Hoon Sul¥, Susan K Service?, Noah A Zaitlen’, Sit-yee Kong?, Nelson B Freimer?, Yurii § Aulchenko!

Chiara Sabatti® & Eleazar Eskin®’

TECHNICAL REPORTS TECHNICAL REPORTS
et nature
genetics genetics
Genome-wide efficient mixed-model analysis for Mixed linear model approach adapted for genome-wide
association studies association studies

; 1 12
Xiang Zhou! & Matthew Stephens Zhiwu Zhang', Elhan Ersoz', Chao-Qiang Lai?, Rory ] Todhunter®, Hemant K Tiwari?, Michael A Gore®,
® Peter ] Bradbury®, Jianming Yu”, Donna K Arnett®, Jose M Ordovas®? & Edward S Buckler!-®



Association Mapping in Multi-
Ethnic Populations

« We (Conomos, Reiner, McPeek, Thornton) developed the
a new linear mixed model method for association
mapping in diverse populations

 LMM-OPS, linear mixed models with orthogonal
partitioned structure

« Appropriately accounts for the complex genealogy of
admixed individuals by partitioning sample structure into
two orthogonal components:

1. acomponent for the sharing of alleles inherited
identical by descent (IBD) from recent common
ancestors, which represents familial relatedness

2. and another component for allele sharing due to
more distant common ancestry, which represents
population structure.



Genomic Control Inflation Evaluation
of LMMs

Method Genome- Highly? Moderately® Weakly*
Wide Differentiated Differentiated Differentiated

LMM-OPS | 1.000 (0.0002) = 0.999 (0.0007) | 1.001 (0.0004) | 1.001 (0.0003)

EMMAX 1.001 (0.0002) = 1.098 (0.0011) | 1.016 (0.0004) = 0.979 (0.0003)

GEMMA 1.004 (0.0002) = 1.110 (0.0011) | 1.020 (0.0005) = 0.980 (0.0003)

Linear Reg. 1.026 (0.0006) = 1.025(0.0009) @ 1.027 (0.0007) | 1.026 (0.0006)
with PCs

a Highly differentiated SNPs: D, 2 0.4 between the two
populations

5 Moderately differentiated SNPs: 0.4 > D, 2 0.2 between the two
populations

¢ Weakly differenfiated SNPs: D, < 0.2 between the two
populo’nons



Type-I Error Evaluation of LMMs
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Genome-wide Allele Frequency

Ditferentiation: HapMap Populations

CEU TSI | CHD JPT |LWK YRI
CEU - 0.00 | 0.047 0.048 | 0.084 0.095
TSI 0.001 - 0.047 0.049 | 0.080 0.092
CHD | 0.208 0.208 - 0.000 | 0.111 0.121
JPT || 0.209 0.209 | 0.003 - 0.112 0.122
LWK | 0.254 0.251 | 0.261 0.261 - 0.000
YRI || 0.262 0.260 | 0.266 0.267 | 0.004 -

The upper half of the table gives the proportion of SNPs highly
differentiated (|Ds| = 0.4) between the two populations. The
lower half of the table gives the proportion of SNPs moderately
differentiated (0.4 > |Ds| = 0.2) between the two populations.

CEU: Utah residents with Northern and Western European

ancestry from the CEPH collection (n = 165)

TSI: Toscans in Italy (n = 88)
CHD: Chinese in Metropolitan Denver, Colorado (n = 85)
JPT: Japanese in Tokyo, Japan (n = 86)
LWK: Luhya in Webuye, Kenya (n = 90)
YRI: Yoruba in Ibadan, Nigeria (n = 172)



Genetic Association for Platelet Count in HCHS/SOL.*
with LMM-OPS

ARGHEF3 _ ACTN1 TPM4
A N

12
= 1 HLBAKl
u nown loc]
! ZEPM2AKS3
= Novel loci MOG ,ryg PLEG ]l\;I]ch

i}
Y

- o= avee &

RSSO

4

»

.

.
L L

-1 I -

.

¥ : : y Y T [ v X
*13 of 57 previously identified platelet-count GWAS loci were generalized
to SOL

ARTICLE

Genome-wide Association Study
of Platelet Count Identifies Ancestry-Specific
Loci in Hispanic/Latino Americans

Ursula M. Schick,1.2:3,16 Deepti Jain,%#1¢ Chani J. Hodonsky,>1¢ Jean V. Morrison,* James P. Davis,®
Lisa Brown,* Tamar Sofer,* Matthew P. Conomos,* Claudia Schurmann,?3 Caitlin P. McHugh,*
Sarah C. Nelson,? Swarooparani Vadlamudi,6 Adrienne Stilp,4 Anna Plantinga,* Leslie Baier,”
Stephanie A. Bien,! Stephanie M. Gogarten,* Cecelia A. Laurie,* Kent D. Taylor,®° Yongmei Liu,10
Paul L. Auer,!! Nora Franceschini,> Adam Szpiro,# Ken Rice,# Kathleen E Kerr,# Jerome I. Rotter,
Robert L. Hanson,” George Papanicolaou,12 Stephen S. Rich,13,14 Ruth J.F. Loos,2:3:15

Brian L. Browning,* Sharon R. Browning,* Bruce S. Weir,4 Cathy C. Laurie,* Karen L. Mohlke,6
Kari E. North,51¢ Timothy A. Thornton,*1¢ and Alex P. Reiner!.16*



Blood count phenotypes available in HCHS/SOL

e Red blood cell

o Hemoglobin/Hematocrit

o Red blood cell indices
(MCH, MCHC, MCV), RBC
count, red cell distribution
width (RDW)

* White blood cell (WBC)
count and subtypes

 Platelet count

WBC RBC Hb Ht MCHMCHC MCV PLT r R?
WBC ! !
RBC 7
Hb
Ht
0
MCH
MCHC
MCV
PLT
1 0
Index Description Calculation
MCW Mean corpuscular volume Hect f RBC x 10
MCH Mean corpuscular hemoglobin Hgb /RBC x 10
MCHC Mean corpuscular hemoglobin Hgb / Het * 100

concentration

RBC - red blood cell volume in millions per microliter (10° / pL)

Hct - hematocrit (packed cell volume) in percent
Hgb - hemoglobin in grams per deciliter (g/dL)




ACTNI and platelet
count

* 1 Mb gene-rich region on
chr 14 previously associated
with platelet count in whites
through GWAS and exome

array (ZFP36L1)

« Hispanic index SNP
s117672662 located in an
enhancer region located

within the first intfron of

ACTNI

o /FP36L1-ACTNI region also
contains GWAS signals for
fibrinogen and IBD
« ACTNI index SNP appears
to be distinct from European
index SNP in ZFP36L1

30 rs117672662
P=10-28 v
25 — v Ll 80 >
x @D
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What About
Environmental Factors?

WHAT CAN | SAY? T WAS
CURSED WITH BAD GeNeT\CS.




Environmental Contributions to
HCHS/SOL Phenotypes

Complex sampling design
Have extensive information on HCHS/SOL subjects
Including household and US Census block group

Develop a new LMM method to estimate
contributions of mulfiple non-genetic variance

components to phenotype variability:

block group
household
polygenic

O
O
O
o unigue environment



Proportional Variance attributed to

Household and Genetic effects

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

M Genetic
B Household
B Census Block




Proportional Variance attributed to
Household and Genetic effects

0.35
0.3
0.25
0.2
0.15

M Genetic
B Household
B Census Block




Heterogeneity Among different Hispanic/Latino

background groups

« Genomic control (GC) inflation is low for most traits
in HCHS/SOL with LMM-OPS

« There are some traits with moderate GC inflation

 We investigated the possibility that heterogeneity in
phenotypic variability among different
Hispanic/Latino background groups might
confribute to the moderate inflation observed for
some traits



matrix E pooled ' Cuban ‘ Dominican . Puerto Rican - Mexican $ Central American — South American

FEV1/FVC Ratio
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Red blood cell count
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Leveraging Ancestry
Heterogeneity: Locus-specific
Ancestry



Full information

Data structure

w 2 1 1 1 0 1 0 1 2 1 1 2 1 1 1 1 1 2 .

Observed (no phase!)

allele
ancestry
inferred
A A |
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Admixture Mapping:
Leveraging Heterogeneity

The heterogeneous genomes of individuals from
admixed populafions may provide advantages over
genetic association analyses in homogeneous
populations

In admixed populations, we can also conduct gene
mapping of by using admixture linkage disequilibrium
(i.e., admixture mapping)

For admixture mapping, ancestry is first estimated at
specific genomic locations with high-density
genotype data.

Local-ancestry estimates can then be used for
complex-trait admixture mapping, for which loci that
have unusual deviations of local ancestry and that
are significantly associated with a tfrait are identified.



Admixture Mapping versus

Genetic Association models
« Admixture mapping
Y=o+ BZ+yX

/ covariates: PC, sex
local ancestry @

candidate marker

« Genotype association
Y=o+ BG+9X

/ covariates: PC, sex
genotype @

candidate marker
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Admixture Mapping versus Genetic

Association models

Ancestry test: Genome-wide analysis

oA

I I
1.5e+07 2.5e+07 3.5e+07 4.5e+07

Genotype test: Genome-wide Analysis

1.5e+07 2.5e+07 3.5e+07 4.5e+07



Albuminuria in Hispanics/Latinos

Increased urine albumin excretion
(albuminuria) is a biomarker of kidney
damage

While the impact of genetic background on
albuminuria risk remains elusive, previous
studies have found an association between
albuminuria and Amerindian ancestry in
Hispanic/Latino populations

Prevalence of Albuminuria is highest in
Native Americans (~20%)
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Inferred’ ances ates 15
"Tocal Ancestry Analysis of

HCHS/SOL

RFMix [Maples et al.; AJHG 2013] was implemented for
local ancestry inference (LAl)of HCHS/SOL

BEAGLE (v.4) [Browning & Browning; AJHG 2007] was
employed for phasing and imputation of sporadic
missing genotypes in the HCHS/SOL and reference
panel data sefts.

European, African, and Native American ancestry
were inferred with RFMix at 419,645 markers genome-
wide



Admixture Mapping of Albuminuria in
HCHS/SOL

* Linear mixed model Admixture mapping analysis of
albuminuria conducted using 12,212 individuals

from HCHS/SOL with

|
] MM Mwwﬁmkam

—logqo(pP)
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Chromosome



Admixture Mapping of Albuminuria in
HCHS/SOL

* Three novel genome-wide significant signals
idenftified at chromosomes 2, 11, and 16.

« The admixture mapping signal identified on
chromosome 2, spanning gl11.2-14.1, is driven by
Amerindian-ancestry.

* Within this locus, the most significant variant is
common among Pima Indians (MAF=0.45) but is
monomorphic in the 1000 Genomes European and
African populations.



SOFTWARE

GENESIS: R software package is available from
Bioconductor

Installation in R:
» source("https://bioconductor.org/bioclite.R")
» bioclLite("GENESIS")

Current release of GENESIS:
PC-AiR
PC-Relate

e Recentrelease includes LMM-OPS
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